

Refractive Index, Density, Molar Refraction and Polarizability Constant of substituted1-phenyl-3-aryl-1H-pyrazol-4-carboxylic Acid Derivativesin Different Binary Mixture V. S. Jagtap¹, D. S. Hedaoo², M. P. Wadekar^{1*}

¹Applied Chemistry Division, Govt. Vidarbha Institute of Science and Humanities Amravati, Maharashtra, India ²Arts, Science and Commerce College, Chikhaldara, Maharashtra, India

ABSTRACT

Refractive index of Substituted1-phenyl-3-aryl-1H-pyrazol-4-carboxylic acid derivatives are determined by using Abbe's refractometer. Refractive index, density, molar refraction and polarizability constant are calculated from data. Calculated data is used to study the solute-solute, solute-solvent and solvent-solvent interaction in the system.

Keywords : Substituted1-phenyl-3-aryl-1H-pyrazol-4-carboxylic acid derivatives, Molar refraction (Rm), Polarizability constant (α), Abbe's refractometer.

I. INTRODUCTION

Refractive index is useful for qualitative analysis of substances that can be determined with great accuracy. Refractive index of liquid which gives idea about geometry and structure of molecule. Measurement of refractive index shows applications in pharmaceutical, chemical, agriculture, food, oil and beverage industries.

The refractometric study of substituted aminopyrimidine in both polar[1] and non-polar solvent is reported.[2] Refractrometry study of some substituted isoxazoline in 70% ethanol water medium at different temperature is done. [3]Study molecular interaction of substituted azomethine drugs is done by refractometrically.[4] The refractometric technique is use to studied the molecular interactions of an electrolyte in binary mixture of liquids.[5,6,7] Some homologous series such as nethanoate, methyl alkanoates and ethyl alkanoates are studied by refractometry technique.[8] The density and refractive index of binary systems ester + n-methyl-2hydroxyethyl ammonium hexanoate is studied.[9] Refractive index and density is studied for substituted N,N'-bis(salicyliden)-arylmethanediamine.[10] Density and refractive index for substituted 2.3dihydroquinazolin-4(1H)-ones is reported.[11] Molar refraction and polarisability constant of 2-hydroxyl-5methyl-4-methoxy chalcone is studied in different percentage of water.[12] Densities and refractive index of different substituted hydrazone have investigated and

from this data, molar refraction (Rm) and polarizability constant (α) was reported.[13] Refractometry technique is used to determined the serum protein concentrations in ring-necked pheasants.[14] Refractometry technique is used to measure the dissolved solids content of both pure and impure sucrose solutions in the sugar industry.[15] The refractometer offers an alternative method of determining soluble solids in citrus juice.[16] Refractometric technique is considered as an important tool for the measurement of glucose concentrations in body fluids such as blood and the intercellular fluid.[17] Refractometric study of substituted heterocyclic compounds such as 5-ethoxycarbonyl-4-(4-bromophenyl)-6-methyl-3, 4-dihydropyrimidine-2-(1H)one, 5carbonyl-4-(4-nitro-phenyl)-6-methyl-3, ethoxy 4dihydropyrimidine-2-(1H)one have done in dioxane, ethanol, THF and DMF at 303K.[18] Molar refractions for aqueous solution KCl and KBrO3 have studied.[19] Molar refraction and polarizability constant have studied for 2-hydroxy-5-ethyl-benzene and 2-amino-5-chlorobenzene sulphonic acid in dioxane and DMF-water medium respectively.[20] The dielectric constant and refractive index is reported for phenols in mixture of benzene acetone and carbon tetrachloride.[21] Molar polarizability constant for allopurinal, acenocoumarol, warfarin and amoxicillin in different solvents are done.[22] Refractometric of study some substituted oxoimidazoline drugs in different concentration of solute and solvents are reported.[23]

Density and refractive index of binary liquid mixture have studied for eucalyptol with hydrocarbon at different temperature.[24] Refractive index, molar polarizability constant and molar refractivity of lisinopril in acetone, DMF, methanol, ethanol, THF and dioxane media in different concentrations have studied.[25] Refractometric study of six binary mixtures of N-butyl bromide with aniline, carbon tetrachloride, benzene, xylene, toluene and n-heptane for the entire concentration range have done at 303.15 K.[26] Refractive index, density, molar refraction and constant substituted 2-oxopolarizability of 2Hchromene-3-carbohydrazide derivatives in different binary mixtureare done.[27] Comparison of refractive index of aqueous mixture of zinc and lead acetate with different temperature at different concentration is done.[28]

The present work deals with the study of molar refraction and polarizability constant of following compounds in nonaqueous solvent such as acetone, methanol and DMF (with different percentage)

1) Ligand A (LA)= 1- phenyl-3-(4'- methyl) phenyl-1Hpyrazol-4-carboxylic acid

2) Ligand B (LB)= 1- phenyl-3-(4'- bromo) phenyl-1Hpyrazol-4-carboxylic acid

3) Ligand C (LC)= 1- phenyl-3-(4'- ethyl) phenyl-1Hpyrazol-4-carboxylic acid

4) Ligand D (LD)= 1,3-diphenyl-1H- pyrazol-4- carboxylic acid

II. EXPERIMENTAL

The refractive indices of solution and solvent mixture under study are determined using Abbe's refractometer. Density of solutions is measured using 10 ml specific gravity bottle. Initially the refractometer is calibrated with glass piece (n=1.5220) provided with instrument. All weighings are done on one pan digital balance with an accuracy of 0.001 gm. The accuracy of Abbe's refractometer is within ± 0.001 units. The constant temperature of the prism box is maintained by circulating water from thermostat at $32 \square 0.1 \square C$. The ligands of which physical parameters are to be explored are synthesized by using reported protocol.[29] The solutions of compounds under study are prepared in different solvents acetone, methanol and DMF by

keeping constant ligand concentration system (0.01M). All chemical usedare of A.R. grade.

III. RESULTS AND DISCUSSION

It is often desirable to know the refractive index of a solute. This index can be derived from the refractive indices of solution and solvent on using a suitable mixture rule.[30] The molar refraction of solvent, solution can be determined by following equation.[31] $R_{SOL-W} = X_1R_1 + X_2R_2$ (1)

Where, R_1 and R_2 are molar refractions of solvent and water respectively.

The molar refraction[32,33,34] of solutions of ligand in solvent -water mixtures are determined from-

$$R_{Mix} = \frac{(n^2 - 1)}{(n^2 + 2)} + \left\{ \frac{[X_1 M_1 + X_2 M_2 + X_3 M_3]}{d} \right\}$$
(2)

Where,

n is the refractive index of solution, d is the density of solution, X_1 is mole fraction of solvent, X_2 is mole fraction of water and X_3 is mole fraction of solute, M_1 , M_2 and M_3 are molecular weights of solvent, water and solute respectively.

The molar refraction of ligand can be calculated as

$$_{\rm lig} = R_{\rm Mix} - R_{\rm SOL-W} \tag{3}$$

The polarizability constant (α) [35,36]of ligand can be calculated from following relation

$$R_{\rm lig} = 4/3 \ \pi No\alpha \tag{4}$$

Where, No is Avogadro's number.

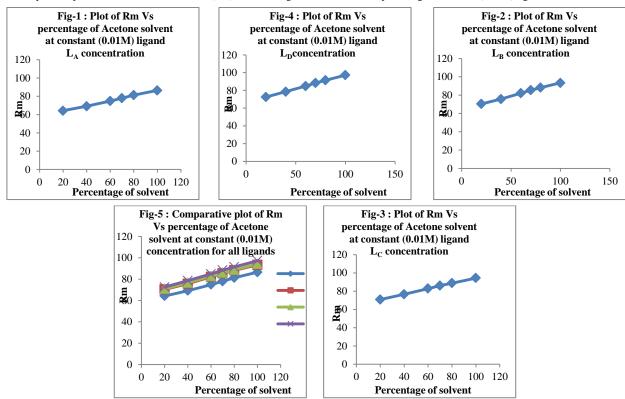
R

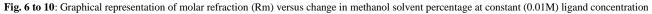
 Table-1: Values of molar refraction of different % of solvent mixture

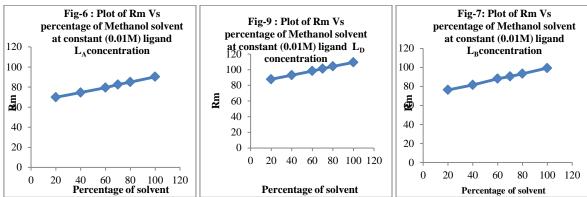
% of solvent	Molar refraction [R]		
mixture	Acetone	Methanol	DMF
20	11.6541	7.8365	17.1769
40	10.9249	6.9123	16.4054
60	9.8437	5.7142	15.1130
80	7.9125	4.1451	11.2451
100	4.20143	7.8214	4.5215

Table- 2: The data of refractive index (n), density (d), molar refraction (Rm), polarizability constant (a) of 0.01M solution of ligand indifferent composition of acetone solvent at 300K.

Conc. In %	Constant ligand concentration system (0.01M) with change in Acetone percentage					
	Refractive index (n)	Density g/cm ³	(d)	Rm x10 ³ cm ³ /mol	α cm ³	x10-23
Ligand L _A						
20	1.350	1.0104		64.2307	2.54	
40	1.344	1.0329		69.1980	2.74	
60	1.375	1.0740		74.8700	2.96	
80	1.397	1.0980		77.9559	3.09	
100	1.414	1.1033		81.2921	3.22	
Ligand L _B	•	•				
20	1.352	1.0110		70.4089	2.79	
40	1.345	1.0339		75.7414	3.00	
60	1.377	1.0755		82.1400	3.25	
80	1.398	1.0980		85.4065	3.38	
100	1.410	1.1046		88.2109	3.49	
Ligand L _C						
20	1.355	1.0139		70.8081	2.80	
40	1.350	1.0359		76.5864	3.03	
60	1.381	1.0775		82.7677	3.28	
80	1.402	1.1005		86.0180	3.41	
100	1.456	1.2041		88.7874	3.52	
Ligand L_D						
20	1.358	1.1055		72.5540	2.87	
40	1.353	1.1295		78.5364	3.11	
60	1.384	1.1740		84.8524	3.36	
80	1.406	1.1993		88.3675	3.50	
100	1.420	1.2046		91.4747	3.62	


Table-3 :The data of refractive index (n), density (d), molar refraction (Rm), polarizability constant (α) of 0.01M solution of ligand indifferent composition of DMSO solvent at 300K.


Conc. In %	Constant ligand concentration system (0.01M) with change in methanol percentage				
	Refractive index (n)	Density (d) g/cm ³	Rm x10 ³ cm ³ /mol	α x10 ⁻²³ cm ³	
		Ligand L _A			
20	1.342	0.8986	69.9365	2.77	
40	1.337	0.9280	74.6476	2.96	
60	1.357	0.9563	79.4426	3.15	
80	1.382	0.9894	82.5437	3.22	
100	1.398	1.0053	85.0147	3.37	
		Ligand L _B			
20	1.347	0.9101	76.3953	3.02	
40	1.342	0.9395	81.6583	3.23	
60	1.368	0.9673	88.2880	3.45	
80	1.388	0.9989	90.5071	3.59	
100	1.404	1.0152	93.4167	3.70	
		Ligand L _C	· · · · · · · · · · · · · · · · · · ·		
20	1.351	0.9122	77.0315	3.05	
40	1.345	0.9416	82.1037	3.25	
60	1.363	0.9697	86.9247	3.44	
80	1.385	1.0037	89.6710	3.55	
100	1.398	1.0195	91.8935	3.64	
		Ligand L _D	· · · · · · · · · · · · · · · · · · ·		
20	1.363	0.9142	87.8472	3.48	
40	1.354	0.9438	93.0433	3.68	
60	1.372	0.9719	98.3732	3.90	
80	1.394	1.0049	101.3344	4.01	
100	1.410	1.0215	104.2224	4.13	


Table- 4 The data of refractive index (n), density (d), molar refraction (Rm), polarizability constant (α) of 0.01M solution of ligand indifferent composition of DMF solvent at 300K.

Conc. In % —	Constant ligand concentration system (0.01M) with change in DMF percentage				
	Refractive index (n)	Density (d) g/cm ³	Rm x10 ³ cm ³ /mol	α x10 ⁻²³ cm ³	
		Ligand L _A			
20	1.361	1.0939	61.1766	2.42	
40	1.356	1.1097	66.6449	2.64	
60	1.378	1.1160	72.7905	2.88	
80	1.404	1.1390	77.2921	3.06	
100	1.441	1.1661	82.6214	3.27	
		Ligand L _B			
20	1.364	1.1902	61.8640	2.45	
40	1.358	1.2061	67.3457	2.67	
60	1.381	1.2122	73.8155	2.92	
80	1.408	1.2342	78.6839	3.12	
100	1.445	1.2612	84.1643	3.33	
		Ligand L _C			
20	1.367	1.1898	62.3612	2.47	
40	1.362	1.2055	68.0552	2.69	
60	1.386	1.2114	74.7301	2.96	
80	1.413	1.2311	79.6007	3.15	
100	1.450	1.2602	85.0490	3.37	
		Ligand L _D			
20	1.373	1.2100	68.4446	2.71	
40	1.365	1.2271	74.7295	2.96	
60	1.387	1.2334	81.6373	3.23	
80	1.415	1.2586	86.9299	3.44	
100	1.453	1.2887	92.8455	3.68	

Fig.1 to 5: Graphical representation of molar refraction (Rm) versus change in Acetone solvent percentage at constant (0.01M) ligand concentration

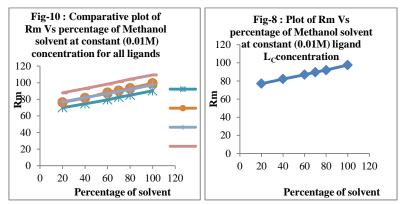
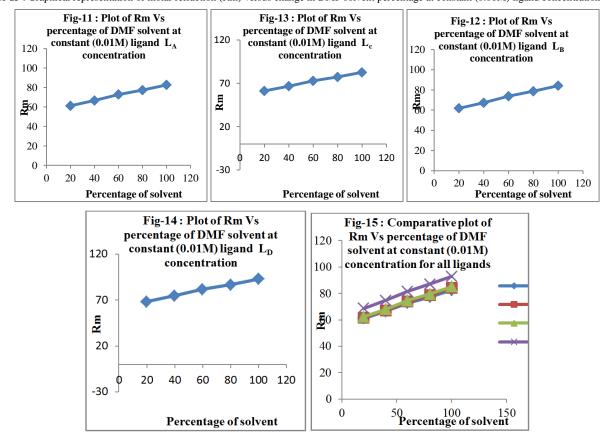



Fig. 11 to 15 : Graphical representation of molar refraction (Rm) versus change in DMF solvent percentage at constant (0.01M) ligand concentration

IV. CONCLUSION

In the present investigation the value of molar refraction and polarizability constant of Substituted 1-phenyl-3aryl-1H-pyrazol-4-carboxylic acid derivatives in various percentage of different solvent mixture at temperature 300K are reported. The experimental data shows that there is decrease in refractive index with decrease in percentage composition of solvent. This is an indication of the fact that refractive index is correlated with the interactions occurring in the solution under study. The data of refractive index (n), density (d), molar refraction (Rm) and polarizability constant (α) of Substituted 1phenyl-3-aryl-1H-pyrazol-4-carboxylic acid derivatives in different percentage of solvent is presented in table no. 1 to 4. It is observed that increase in percentage of organic solvent, the values of molar refraction and polarizability constant increases. The graphs of molar different refraction (Rm) versus percentage compositions of organic solvent are plotted. These are shown in fig. no. 1 to 15. From this it is observe that there is linear relationship between molar refraction and concentration. It shows that molar refraction increases linearly as the percentage composition of organic solvent increases. This is attributed to the dispersion force and it is the molecular force which arises from temporary dipole moment. The cumulative dipole-dipole interaction creates weak dispersion force resulting in increase in molar refraction and polarizability constant.

V. Acknowledgement

The authors gratefully acknowledge The Director; Head, Department of Chemistry, Govt. Vidarbha Institute of Science and Humanities, Amravati for providing necessary facilities and help when needed for the work.

VI. REFERENCES

- Kalaskar M. M.; Chandak H.S.; Wadekar M.P. Refractometric study of substituted aminopyrimidine in polar solvent. Der Pharma Chemica, 2015, 7(9), 261.
- [2]. Kalaskar M. M.; Chandak H.S.;Wadekar M.P. J. Chem. Pharm. Res., 2015, 7(9), 595.

- [3]. Jaiswal G. R., Narwade M.L.; Refractrometry study of some substituted isoxazoline in 70% ethanol water medium at different temperature. R. A. J. Applied chem., 2017, 3(2).
- [4]. Kawalkar A.V.; Wadekar M.P. Study of molecular interaction of substituted azomethine drugs. Der Pharmacia Sinica,2015, 6(8), 25.
- [5]. Das S., Hazra D. Viscosity b-coefficients of tetraalkylammonium bromides in dimethyl sulfoxide-water mixtures. Indian J. Chem. 1988, 27, 898-901.
- [6]. Kapadi U., Chavan S., Partial molar volumes and viscosity B coefficients of benzyltriethylammonium chloride in dimethyl sulfoxide+ water at different temperatures. J. Indian Chem. Soc., 1994, 72, 269.
- [7]. Mehrotra K.; Rawat M. Ultrasonic and viscometric studies of yttrium soaps in mixed organic solvents. J. Indian Chem. Soc.,1992, 69, 193.
- [8]. Sharma S.; Patel P.B.; Patel R. J.; Vora J. J. Volume fraction determination of binary liquid easurement of the equalization wavelength. E. J. Chem., 2007, 4(3), 343.
- [9]. Alvarez V.H.; Mattedi S.; Aznar M. Density, refraction index, and vapor–liquid equilibria of nmethyl-2-hydroxyethylammonium hexanoate.Ind. Eng. Chem. Res., 2012, 51, 14543.
- [10]. Li Y., Yang Z.S., Wang F.D. Artemisinin derivatives bearing Mannich base group: synthesis and antimalarial activity. Bioorg. Med. Chem., 2003,11, 4363-4368
- [11]. Hedaoo D.S.; Kalaskar M.M.; Wadekar M.P.; Refractometric study of substituted-2,3dihydroquinazolin-4(1H)-ones in different binary mixture. Der Chemica Sinica,2015, 6(6), 7-14.
- [12]. Burghate A.S.,Agrawal P.B.,Quazi
 S.W.,Narawade M.L., StudyMolarRefractionand Polarizability Constant of 2'-Hydroxy-5'-Methyl4-Methoxy Chalcone in Different Percentage of Acetone-Water Mixture. Asian. J. Chem.,2001, 13
- [13]. Khadse P.; Chandami A.S.; Wadekar M.P.Int. J. Chem. Phys. Sci.,2015, 4,1369.
- [14]. Schmidt E.M.; Paulillo A.C., Int. J. Pol. Sci.,2008, 7(7), 672.
- [15]. Charles D.F.; Medas P.F. Ana. Chem., 1955 27(3), 373.

- [16]. Stevens J.W.; Baier W.E. Ind. Eng. Chem., Refractometric Ddetermination of soluble Solids in citrus juice. 1939,11(8), 447-449.
- [17]. Zirk K.; Poetzschke H. Med. Eng. Phys, 29(4), A refractometry-based glucose analysis of body fluids.2007, 449 -458.
- [18]. Meshram Y.K.; Rewatkar S.B.; Nimbarte R.G.; Dharamkar R.R. Int. J. Sci. Res2016, 5(6), 2142.
- [19]. Arun B., Nikumbh M., Rathi V., Int. J. Tech. Res. Appli., 2014,2(6), 116.
- [20]. Wagh S., Ph. D. Thesis in Chemistry, Amravati University, Amravati, 2004.
- [21]. Anandhi R.; Krishnamurthi P. Dielectric and refractive index studies of phenols in carbon tetrachloride, benzene and acetone through excess parameter. J. Chem. Pharm. Res., 2014, 6(2), 353-358
- [22]. K.M.Sonune K.M., Meshram Y.K., Saoji V.N., Tambatkar G.D., Studies on viscosity, density and refractive index of substituted heterocyclic compounds in different media. Acta Chemica Indica 2007, 2, 131.
- [23]. Tayade R.R.; Kalaskar M.M.; Wadekar M.M. Der Chemica Sinica,2014, 5(5),12.
- [24]. Oswal S.L.; Oswal P.; Modi P.S.;.Dave J.P.,Gardas R.L. Acoustic, volumetric, compressibility and refractivity properties and Flory's reduction parameters of some homologous series of alkyl alkanoates from 298.15 to 333.15 K. Thermo. Chim. Acta, 2007,410.
- [25]. Sonar A.N., Eur. J. Biomed. Pharm. Sci.,2016, 3(5), 345.
- [26]. Ansari N.H., Trivedi A., D.Sharma , Chandra P., Refractometric studies on molecular interactions in six binary liquid mixtures. Open J. Phy., Chem., 2014, 4, 1-5.
- [27]. Choudhari P.P., Hedaoo D.S., Wadekar M.P., J . Chem. Bio. and Phy. Sci.,2016,7 (1),28
- [28]. Joseph M., Ignatius J., Int. J. Pure and Applied Physics, 2017, 13 (1), 167.
- [29]. Kira M.A.; Abdal-Raeman M.O.; Gadalla K.Z. Tetrahydron letter,1969, 2, 109.
- [30]. Heller W., "Remarks on refractive index mixture rules." The Journal of Physical Chemistry1965, 69 (4), 1123-1129.
- [31]. Wadekar M.P., Shrirao A.S., Tayade R.R., Effect of change in concentration of solute and solvent on molar refraction and polarizability constant of

some thiopyrimidine derivatives Der Pharma Chemica, 2014,6(6), 90-96.

- [32]. Karanth V.R., Bhat D.K., Volumetric, acoustic, and refractometric study of cyclic alanylalanine in aqueous cobalt chloride solutions at temperatures J. Chem. Eng. Data,2013 58, 271-278.
- [33]. Dhondge S.S., Density, speed of sound, and refractive index of aqueous binarymixtures of some glycol ethers. J. Chem. Eng. Data,2010 55, 3962-3968.
- [34]. Solomonov B.N., Varfolomeev M. A., Nagrimanov R.N., Novikov V.B., Ziganshin M. A., Gerasimov A.V., Verevkin S.P., Enthalpies of vaporization and sublimation of the halogensubstituted aromatic hydrocarbons at 298.15 k: application of solution calorimetry approach J. Chem. Eng. Data,2015 60(3), 748-761.
- [35]. Wang J., Xie X.Q., Hou T., Xu X., J. Phys. Chem. 2007 111(20), 4443.
- [36]. Burghate A.S., Agrawal P.B., Quazi S.W., Narwade, Study of molar refraction and polarizability constant of 2'-hydroxy-5'-methyl-4methoxy chalcone in different percentage of acetone-water mixture asian j. chem., 2001, 13(4), 1652.